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I. INTRODUCTION

There is an ongoing need in a variety of Department of

Defense applications for a dependable, efficient, high average

power laser operating at ocean water transmitting wavelengths

(A ' 470 nm). It has also been historically true that few

lasers operating near thip optimal wavelength are available,

let alone meet the requirements for efficient, scalable opera-

tion. To develop a blue-green laser system, one can either

explore new laser concepts leading to direct lasing in this

sought-after bandpass or undertake means to shift the output

wavelength of existing, proven lasers into the desired regime.

One such class of proven lasers are the excip!ex lasers which

include the rare gas halides, halogens and mercury halides (see

Table I). Of these exciplex systems, there are four that have

a demonstrated capacity for respectable efficiencies and

scalable, high power operation; namely ArF* (193 nm), KrF*

(249 nm), XeCl* (308 nm) and XeF* (351 nm). Of these, we feel

XeF* shows the most promise as a basis for an efficient con-

verter. This is based principally on its suitability for

scaling to high power and the fact that the blue-green spectral

region can be readily accessed by stimulated Raman uutput from

XeF* pumped molecular hydrogen.

For any stimulated Raman process phenomenologically, the

acceptor molecule (e.g., H2 ) can be thought of as absorbing

an incident photon (e.g., XeF* 351 nm) thereby making a transi-

tion to a virtual state and then, with the _aission of a Raman

photon at longer wavelengths, proceeding to : level near the

ground (initial) state (e.g., H2 (v = 1)). Stimulated Raman

scattering in hydrogen by rare gas halide pumps has been

studied at LASL.() The forward scattering cross section is

large ano overall energy conversion efficiency of - 81 has

been observed with > 50% in the 1st Stokes line routinpiy e-

ported. (1)

5
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TABLE I

A SUMMARY OF EXCIPLEX LASERS AND THEIR LASING WAVELENGTHS

EXCIPLEX , (B -+ X)
nm

ArF 193

KrCI 222

KrF 249

Xe3r 282

XeCI 308

XeF 351 (B-*X), 500 (C-A)

F2  158

FCI 284

Br2  292

12 342

IF 491

Hgl 440

HgBr 502

HgCI 558

J4217

6
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We have been experimentally investigating wavelength con-

version of XeF* to the blue-green using this technique of stim -
ulated Raman scattering involving hydrogen and deuterium.

In particular, our approach involves sequential conversion
through two distinct, separate steps involving H2 and D2

Step 1

hVXeF + H2 (lst Stokes) + hvH 2 (411,414 nm)

Step 2

hVH 2 (411,414 nm)+D 2 (lst Stokes) + hvoutput( 469 ,472 nm)

The use of two separate cells provides wavelength flexi-

bility through the chvice of appropriate Raman scattering media
in the various cells. In addition, optimization on first
Stokes in both cells, sequentially, each in a single pass, is a
straightforward method for minimizing the effects of four-wave,

parametric mixing processes which can reduce the desired Stokes

output.

The ability of the AERL two-step approach to select a
desired wavelength through the choice of the gases contained in

the two cells can have significant system advantages, since

various ocean water types have different wavelength transmis-

sion properties (see Figures 1-5). Figure 1 shows the Jerlov

attenuation coefficients as measured through the top 10 m of

surface water classified according to ocean types. Figure 2
plots the same data as attenuation of incident light through

100 m of ocean water, assuming the top 10 m are characteristic

of the entire optical path length. For types I, II and III

water, there is a clear advantage in transmitted signal for

wavelengths near 475 nm, and a laser operating at or near this

wavelength would be appropriate for all three ocean types. For

coastal types, longer wavelength lasers offer some advantage

but the extreme signal attenuations involved may suggest that

wavelegth may not be the single most significant issue.

7
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OCEAN WATER TRANSMISSION TO 100 METERS
(JERLOV DATA)
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This influence of wavelength is depicted on a relative

basis in Fiqures 3-5. Here the peak transmission is listed for

the optimum wavelength along with a plot of the relative wave-

length scaling for each ocean type normalized to the peak. For

example, Figure 4 shows maximum 100 m transmission through

ocean type II is 0.2% at 475 nm. At this same wavelength, type

III transmits a very small percentage (see top of Figure 4) and

itself is plotted with coastal type 1 in Figure 5. These

graphs, which plot transmission on a linear scale, demonstrate

more clearly the significant dependence of the transmitted

signal on wavelength.

Blue-green lasers operating as near to the ocean transmis-

sion window as possible provide the greetest potential signal-

to-target, thus reducing the required laser power needed to

provide any minimally acceptable receiver signal. The output

wavelengths of 469 and 472 nm, corresponding to our approach of

two-step conversion with D2 and H2 of the two lasing tran-

sitions of XeF*, are nearly optimum for ocean water transmis-

sion based on these Jerlov data. Since high conversion effi-

ciency has been demonstrated in H2 at AERL with an XeF* laser

pump, we project that, starting with an XeF* overall efficiency

of 4%, an overall blue-green laser efficiency of 1% is

attainable.

rB
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II. BACKGROUND

In general, for the stimulated Raman process both atomic

and molecular gases can act as the nonlinear medium, and some

of the differences between the atomic and molecular cases are

illustrated in Figure 6. For any stimulated Raman process, the

acceptor atom or molecule can be thought of as absorbing an in-

cident photon (e.g., XeF* 351 nm) thereby making a transition

L to a virtual state and then, with the emission of a Raman

photon at longer wavelengths, proceeding to a level near the

ground (initial) state. For an atomic candidate, the practical

constraints involve searching for an atom which has a dipole

* allowed electronic transition near the pump laser frequency and

a corresponding transition from that upper state (2) to a lower

state (3) at the sought-after conversion wavelengths. Specifi-

cally, for this blue-green mission, workers at the Naval

Research Laboratory (Ref. 2) have reported high conversion

efficiency of XeCk (308 nm) to 459 nm using atomic lead as the

scattering candidate. These atomic systems do, however, have

the singular disadvantage of requiring high-temperature produc-

tion techniques (heat pipes) which may prove technologically

difficult at the very high average powers under consideration

for actual systems applications. In addition, the typical

achievable metal atom density requires the use of the metal

atom more than once during the laser pulse (recycling) or large

volume sources, since one must have at least as many metal

atoms as photons for high conversion efficiency. For molecular

Raman scattering (see Figure 6), the process is generally the

same as in the atomic case but is much more non-resonant.

Since there is no resonant enhancement of the cross section,

large densities are usually required to produce reasonable gain

for readily available pump lasers.
PRECEDAG PAGE BLda-NOT FIiLI
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Figure 6 Optical Conversion by Stimulated Raman Scattering
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III. RESULTS

A. SHORT-PULSE LASER RESULTS

For the past eight months, we have been investigating

efficient generation of Stokes shifted radiation using a com-

mercial exciplex laser as the pump (Lumonics, TE-261-2) and

molecular H2 and D2 as the Raman scattering media. General

laser specifications as detailed by the manufacturer were found

to be achievable with our particular device (e.g., it produced

-75 mJ of energy per pulse with XeF* and - 190 mJ for KrF*

with the cavity optics provided). The beam quality associated

with these achievable energies was insufficient to provide

focussed intensity-length products to achieve laser action in

the Raman gas. We, therefore, altered the cavity optics to

include Brewster windows and an unstable cavity configuration

of the type described by Barker and Loree (Ref. 3). This

cavity produced Z 20 mJ of XeF laser energy in a pulse (FWHM)

of = 6 ns with a beam waist 10 times the diffraction limited

value. The power density achievable was measured at the focus

by recording the energy transmitted through various diameter

pinholes. The beam waist at the focus of a 50 cm fl lens was

found to be near 2.5 x 10 -2 cm in diameter with an energy of

10 mJ. This, with the 6 ns pulselength, corresponds to an

achievable power density of - 3 x W/cm at the focus.

Efficient conversion however relies on an intensity-

density-length product well in excess of threshold to achieve

optimum conversion of XeF pump radiation to first Stokes. To

measure efficiency and to parameterize the Raman process, the

experimental setup shown in Figure 7 was used. Here the output

of the Lumonics was focussed through a pinhole to 1) character-

ize the input beam, and 2) eliminate that portion of the pump

with poor beam quality. In this arrangement, a second lens

refocusses the beam into the center of our high-pressure Raman

cell. 17
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Figure 7 Schematic of Experimental Setup where L is the
~Lumonics Laser, a and b are 50 cm fL lens, C is

the High-Pressure Cell, D is a Photodiode, F are
~Filters and 0 is a Spectral Monitoring or Energy
I Measuring Device
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The Raman cells were constructed from available stainless

steel shock tube sections about 40.6 cm long with an inner

diameter of 3.8 cm and a wall thickness near 1.3 cm. The

polished Ultrasil quartz windows were near 6 cm in diameter

and - 2.5 cm thick. The windows were supported by O-rings on

the high-pressure side and by gaskets on the low-pressure

side. The internal volume of these cells was near 465 cm3 .

Pulse energies in these experiments were measured with a

Scientech Model 362 energy/power meter. Pulse shapes were mea-

sured by photodiodes (ITT, type S-5 or Hammamatsu, type S-4).

The outputs from the photodiodes were recorded by a Tektronics

Model 7844 dual beam oscilloscope equipped with a C-51 oscillo-

scope camera.

Spectra were analyzed with either a 3/4 m monochromator,

1 m spectrograph, or an optical multichannel analyzer (Tracor

Northern, Model TN-1710, equipped with a Diode Array Rapid Scan

Spectrometer).

Using this arrangement and these various diagnostics, the

effects of laser intensity, focal length, and H 2 pressure on

the stimulated Raman scattering threshold, gain, Stokes produc-

tion and conversion efficiency were investigated.

The pump laser intensity (at fixed focal length) was

varied in two ways: by repeated firings to degrade the mix

from optimum or by lowering the laser charging voltage. Using

either technique, the subsequent results were identical, so the

more convenient technique of varying the charging voltage was

usually employed. Since these experiments were all carried out

with focussed geometry, a related factor to the intensity

achieved (W/cm 2 ) is the length over which the intensity was

high. A visual perspective of the various focal arrangements

used is shown in Figure 8. These pictures were obtained by

open shutter exposures of the focussed laser light into a glass

19
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cell containing a dilute solution of Rhodamine 6G. The focal

length of - 135 cm geometry provided a beam waist of about

0.05 cm in diameter. Figure 9 shows a plot of the energy

through this size pinhole vs distance from focus. The distance

beween half-power points (or the effective Rayleigh range) is

about 8 cm. Since the active length of the high-pressure cell

is over 40 cm, there was no problem anticipated with gain clip-

ping and no effect on the Raman output was observed when a

F Raman cell of - 90 cm was used.

For this experimental setup (at a maximum laser output

corresponding to near 4.5 x 108 W/cm 2 for this relatively

soft focal geometry), the dependence on forward scattered

Stokes generation on 112 pressure was measured (see Fig-

ure 10), using the optical multichannel analyzer (note that the

intensity vs wavelength calibration has not been measured).

The first Stokes component appears to optimize at pressures

above 15-20 atms (- 250 psi) whereas the second Stokes appears

to peak near 25-30 atm and then decrease at higher pressures.

These pressure scaling results are in agreement with the

KrF/H 2 experiments of Loree (Ref. 1) and the gain saturation

reported by Bloembergen (Ref. 4).

By now keeping the focal length and H2 pressure fixed,

variations in Stokes output were measured as a function of XeF

pump input, (see Figure 11). With data similar to these, it is

possible to calculate the small-signal gain for this single

step process. From our measurements, we found threshold to be

near 2.2 mJ. The pulsewidth was 6 ns and the length over which

significant conversion occured was near 8 cm with a beam waist

at the center of the focal region of - 0.05 cm. Since it is

commonly regarded that a gain times length - 30 is necessary to

achieve lasing from noise (i.e., spontaneous Raman scattering),

we can calculate the small-signal gain, g, as follows:

21
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H2 CONVERSION
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Figure 11 Optimized XeF Conversion to First Stokes vs Input
Energy
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g ITh L 30

* where

-3 .

2.2 x 10 - J 8 WI T h 9= 1 9 x 1 0 2

ITh 6 x 1 S x 7r (0.025 cm) cm

and L =8 cm

.L.g < 1 = 830 2 x 10 cm/W
Th 1.9 x 10 *8

This value is about a factor of 5 larger than the value deduced

from wavelength scaling of that reported by Bloembergen

(Ref. 4) at Ruby wavelengths (see Figure 12). Since the theo-,

retical wavelength scaling for the SRS cross section is fairly

straightforward, our results suggest that Bloembergen's

reported value is too low. For this blue-green application,

our measured small signal gain suggests that this overall Raman

approach is relatively easier to accomplish than we had pro-

jected in our proposal last year.

The input energy for efficient conversion was also deter-

mined from these experiments and the intensity length product

needed to accomplish significant conversion was found to be

near 3.8 x 109 W/cm. This suggests that an XeF* laser

having output near 10 J/cm 2 in a 1 ps pulse would require

(for similar H 2 densities) a path length of 3.8 m for effi-
cient conversion to first Stokes to occur--a very practical

value.

These calculations do represent approximations however,

since, for example, the laser output is in two separate lines

and the measured threshold energy, beam waist, conversion

length, etc. introduce some additional degree of uncertainty.

Further measurements to better establish these values are in

progress.

25

.AVCO EVERETT



i0-1 I I I I I'

ArF

(XeF-THIS WORK)

\ KrF

CE 102

CBLOEMBERGEN)
XeF RUBY

-3I I I I I
100 2000 3000 4000 5000 6000 7000

H8447 XPUMP (A)
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deduced from this work.
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As mentioned above, this pump laser does produce output at

both 3511 K and 3532 K (see Figure 13) with -80% at 3511 K.
The total temporal pulsewidth was measured to be 6 ns (FWHM).

When these spectral lines were observed independently with a

monochromater, their individual pulsewidths were still near

6 ns but the 353 nm line was delayed slightly from the 351 nm

line. This observation is consistent with the observations of
others of higher gain in the 351 nm band at room temperature

(Ref. 5). Pulse shape measurements of the first Stokes pulses

were initially performed with the experimental setup using the

50 cm focus (see Figure 8) at pressures of 10 atm. Character-

istic pulse shapes are shown in Figure 14. The top traces show

the input laser pulse with the 351, 353 nm XeF lines unre-

solved. The bottom traces are of the corresponding 410, 413 nm

first Stokes lines. The temporal widths of these Stokes-
shifted lines are - 4 ns. Similar effects were observed for

the softer focus. Measurements of the pulse shape of the

second Stokes component from a single cell did not show any

further pulse distortion, i.e., they had essentially the same

4 ns pulsewidth as the first Stokes.
All of these data and the above discussion allows us to

summarize the results of our single pass, single cell, XeF*
pumped H2 conversion efficiencies for optimized experimental

conditions. Conversion efficiencies were calculated by measur-

ing the output energy from the Raman cell through a series of

spectral filters, then adjusting the recorded energy for the

known transmission of the filters and finally ratioing it to
that measured through an empty cell. A photon conversion effi-

ciency of 100% is usually not achievable in these non-resonant
molecular Raman systems because as the first Stokes radiation

approaches high intensities, it itself acts as a pump and is

converted to higher order Stokes emission. Table II contains a

summary of the typical output and conversions observed. The

27
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power conversion efficiency is the relevant value, since the

energy efficiency should approach the power efficiency for suf-

ficiently long pulselengths. These reported efficiencies did

vary somewhat from experiment to experiment, however, the

values presented here were observed routinely. (The actual

highest efficiency for conversion to S1 with H2 in a single

experimental observation was 57% energy and 86% power conver-

sion efficiency.)

Other stimulated Raman conversion efficiencies for H2
reported in the literature include 20% photon efficiency into

S1 pumped by a 1.06 P laser by A. Grasiuk (Ref. 6), while

Komine and Stappaerts (Ref. 7), report power photon conversion

efficiencies of near 50% into either S or S2, when H2 is
pumped by a tripled Nd:Yag laser at 355 nm with an oscillator

amplifier configuration. Loree, et al. (Ref. 1), have also

reported up to 70% energy depletion into various Stokes orders

for KrF pumped H2.

All of these experiments suggest efficient conversion to

longer wavelengths via stimulated Raman scattering in a single

pass is readily achievable.

The next topic that we addressed in these short pulse, low

energy experiments was the second step in the two-step process;

namely, investigation of the conversion properties of the

emerging S1 from cell one, subsequently acting as a pump, to

produce its S1 in cell two. (See Figure 15.)

The first of these experiments consisted of two-step

shifting through two cells filled with hydrogen, i.e., XeF +

12 + H2 . The first cell was optimized for maximum conver-

sion of XeF* to first Stokes, SIl at 410, 413 nm. These

emerging laser photons were separated from the depleted pump

via a dielectric coated mirror. The depleted XeF* pump was

thus rejected, while the first Stokes beam from cell one was

focussed into the second cell, also optimized to convert into

its own first Stokes at 495 nm and 499 nm.
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2 CELL EXPERIMENTS

P I P2

J3735

Figure 15 Schematic of Experimental Setup where C1 and C2 are
the Two High-Pressure Cells and PI, P2 the Photodiodes
for Monitoring the Inputs to each Cell Respectively
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Experimentally, the same conversion efficiencies observed

through the first cell were not observed in the second step.

This was essentially due to the limitations in S1 energies

(acting as the pump) which could be delivered into the second

cell through the various optical components (mirror, lens, win-

dow, etc.). We were apparently just over threshold in pump

laser intensity for the second-step SRS process.

Specifically, the XeF pump laser was focussed into the

first cell with a focal length of about 135 cm and the cell was

maintained at pressures > 40 atm to insure good conversion.

The output light (depleted Xei* and S1 radiation) resulting

frow this optimized configuration was collected and then re-

focussed into a second cell. A dielectric coated mirror was

usually employed, behind the first cell, to reflect (> 99.9%)

of the depleted pump yet partially transmit (- 50%) the first

Stokes radiation. The waist diameter and conversion length of

this S1 radiation was measured as before (see Figure 16)

From this figure, the effective gain length is near 5 cm and

the power density at the focus is estimated as follows:

0.05 cm pinhole
-31.5 x 10 J 4 8 W

-9 2 2= 1.9 x 10
4 x 10 s 7r(0.05) cm cm

0.04 cm pinhole

0.7x10 3 J 4 8 W

4 x 10 -9  r(0.04) 2cm 2  cm

This represents a lower limit for the actual power density of

this first Stokes laser light '.n that > 50% of the power was

lost in transmission through the optical components. When

these are taken into account, the measured power density of the

first Stokes compares favorably with the XoF pump (4.5 x

108 W/cm 2 ) and indicates that the beam quality of the

emerging Raman Stokes shifted light is comparable to the pump.
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The variation of the conversion features with the pressure

in the second cell was qualitatively similar to that measured

in the single cell experiments. Figure 17 shows a plot of the

output as measured with the OMA when the pressure in the second

cell was varied. (These data are not directly comparable in

that the sensitivity of the OMA is greater at 500 nm than at

400 nm but the degree is unknown.) The points at "zero pres-

sure" indicate that the input consisted of both S1 and S

Threshold in the second cell was measured by monitoring

the first Stokes input with a photodiode and the second Stokes

output with another photodiode. The results are summarized in

Figure 18. In these experiments, the first Stokes, acting as a

pump in the second cell, is probably not far above threshold.

The intensity-length product for conversion of

XeF*/H 2/H2 can be calculated from these second-cell experi-

ments. The threshold energy was near 1 mJ. The pulselength

was 4 ns with a beam waist of 0.05 cm and a conversion length

-5 cm at the focus of the second cell. The intensity-length

product is, therefore, near 6 x 108 W/cm which is consider-

ably less (even aft-er wavelength scaling is accounted for in

the calculation) than the value calculated from the single-cell

experiments. This lowered (apparent) threshold is caused by

the presence of a small amount of second Stokes radiation

emitted from cell 1 and entering into cell 2. This small

amount of second Stokes can act as the initial input for the

conversion process and would require less amplification (i.e.,

a total gain significantly < 30) for stimulated Raman scatter-

ing to occur.

The temporal features of the two-step conversion are

depicted in Figure 19. This figure shows the XeF pump, the

first Stokes output of cell 1 and the second Stokes output of

cell 2, when both cells were filled with H2. The pulsewidth

goes from 6 ns for the XeF laser to 4 ns for S1 to 2.5 ns

(FWHM) for S2, although the general pulse shapes remained the

same. 35

:::AAVCO EVERETT



CELL 2 (H 2 ,142 ) PRESSURE VARIATION

0-DEPLETED Ist STOKES PUMP
0- 2nd STOKES

SI I I I

000 0

0o o o
0- 00

00

00

oo

a. 0

00

0

II I I I I
0 10 20 30 40 50 60 70

J3723 CELL 2 PRESSURE (ATMOSPHERES)

Fiqure 17 Cell 2 (H2, H2) Pressure Variation Effect on Si
Pump and the Generation of S2

36

.,:;AVCO EVEREI-T



0
0

a~ 0

0-I

0 0

(0)>-

0 i0

0\ 0 0

Ist STOKES PUMP (ARBITRARY UNITS)
J 3724

Figure 18 Cell 2 Threshold for S2 as a Function of Sl Input
Intensity

e97AVC0 EVERETT



I0 ns I0 ns 5ns

XeF INPUT 15t STOKES 2 nd STOKES FROM CELL 2
H2  H2 , H2

J 3749

Figure 19 Pulse Temporal Narrcwing in Successive Conversion

38

Z9AVCO EVERETT



The typical energy conversion efficiency measured in this

manner was 25 to 30% into S2 output from the S1 input,

i.e., 495 out/410 in. This corresponds to a photon conversion

. efficiency of 30 to 35%, a power efficiency due to pulse short-

ening of 40 to 48% and a photon power efficiency of 48 to 56%.

The total energy conversion efficiency from the XeF input into
cell 1 into S2 output from cell 2 was 12% (34% photon power

conversion). As discussed above, conversion efficiency char-

acteristics of what was achieved in a single cell should be

achievable in any subsequent cell for an overall conversion of

'71')2 . Since we measured power conversion efficienries of

66% in a single cell, overall conversion > 40% 'o the blue-

green should be achievable, but were unobtainable here due to

the low pump intensities available.

This conjecture was tested somewhat by conducting two-step

experiments with KrF* as the pump. The KrF laser operates at

higher output intensities and was capable of generating signi-

ficant quantities of Sl through 12 (see Figure 20). In

this case, the first cell contained 67 atm of D2 which re-

sulted in an output consisting mainly of depleted pump (249 nim)

and S1 at 268 nm. These laser transitions were collected and

focussed into the second cell containing H2 . They each gen-

erated their own Stokes components in cell 2 but, most of the

output consisted of a few first Stokes orders (see Figure 20).

Of particular interest is the fact that the 268 nm S1 output

of cell 1 was depleted over 70% in cell 2, with the majority of

the output appearing in the sought after 308 nm line (which

would be analogous to the production of 469 and 472 with XeF as

the pump).

B. LONG PULSE EXPERIMENTS

Included as part of this DARPA-Supported program, we also

investigated Raman scattering using the output of a one-meter

laser as the pump for single pass, single cell spectral observ-

ations. To perform these experiments, two different e-beam
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laser devices were used. The first experiments which were car-

ried out last summer involved the (10 x 10 x 100) cm3 device

constructed in support of the N00014-76-C-1032 DARPA-funded

contract. [t was run with conventional optics and provided

S5 J in 600 ns for the few experiments we tried. Under these

conditions, the output was collected by a 6-in. Ultrasil quartz

piano-convex lens (50 cm fl) and focused into the center of our

high pressure H2 cell (_ 10 atm). We observed output spectra

corresponding to Sl, S2 and AS1 (see Figure 21). From

color Polaroid open shutter photographs, it appeared that the

output consisted of principally parametric four-wave conversion

processes as was evidenced by the observation of annular rings.

Also, the intensity correlations in the Stokes radiation

(AS1 > S2) supported this contention.

More recently, we performed SRS experiments using a
(2 x 2 x 100) cm3 e-beam device operating with KrF* at

249 nm. This device produced - 0.5 J in 0.3 Ms with flat

(stable) optics. This output was again focussed into the high-

pressure H2 cell (> 30 atm) and significant conversion to

SI , S and some S3 was observed using the OMA (see Figure

22). Energy measurements showed energy conversion to these

Stokes lines was significantly > 10%. Also, photodiode mea-

surements of the pump pulse and first Stokes pulse showed con-

version occurred over the entire extended pulselength (see

Figure 23). We believe the temporal features seen in the Raman

output represent amplification of small-scale temporal struc-

ture in the laser pump due to the many cavity modes present in

the stable optics (flat-flat) setup.

This cavity has been modified to include Brewster windows

and unstable optics (see Figure 24). Energy output near 0.6 J

in 0.4 s has been routinely observed. Using this beam, we

have observed long pulselength XeF* SRS in H2 (see Figure

25). Here the OMA shows conversion is principally into S

(413 nm) with significant depletion of the XeF pump and genera-

tion of S2 (499 nm). These data are not calibrated and these
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Figure 21 Spectra Giving Qualitative indication of Relative
Intensities of XeF Pumped H2 (AS1 P1 S11 S2
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Figure 22 OMA Output for KrF Pumped H2 with Filter to Remove
Pump (249 rim) and Shorter Wavelengths
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Figure 23 Temporal Pulse Shapes of Input KrF Pump and S
Stokes Shifted Raman Pulse
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Figure 25 Long Pulse Length XeF* SRS Experiment (H2)
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spectral results are merely qualitative. More quantitative re-

sults are shown in Figure 26 where the XeF pump was softly

focused (- 135 cm) into about 30 atm H2. Data collected with

photodiodes and appropriate filters showed - 35% pump deple-

tion with the majority going into first stokes in good agree-
ment with our expectations. These conversion experimental re-
sults are preliminary. Further experimentation is underway and

will be summarized in subsequent Interim Technical Reports.
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